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OBSERVATIONS OF STRESS WAVE PROPAGATION IN A
HALF-PLANE WITH BOUNDARY LOADING

J. W. DALLY and S. A. THAU
Department of Mechanics. Illinois Institute of Technology

Abstract-This investigation treats the half-plane with a boundary load using a combined theoretical and experi­
mental analysis. The theoretical approach considers an isotropic. perfectly elastic. semi-infinite plate with a concen­
trated normal load on the boundary. The experimental model consisted of a large sheet of columbia resin CR-39
loaded with a charge of lead azide in a semi-cylindrical pit on the edge of the plate. Results for the boundary
stress from the theoretical and dynamic photoelastic analyses were compared. The comparison showed agreement
for effects due to the P wave and marked but explainable differences in the theoretical and experimental results
associated with the Sand R waves. It appears that a better correlation between loading functions for the experi­
mental and mathematical models is required in order to improve agreement.

1. INTRODUCTION

THE analysis of the response of a dynamically loaded elastic half-plane is of interest in both
the application and the theory of elastic wave propagation. When the thickness of the plane
is small compared to the characteristic wave lengths ofthe disturbance, the half-plane serves
as a two-dimensional generalized plane stress model for studying the transmission of stress
waves along a free boundary, such as the surface of the earth [1]. In addition, the pheno­
menon of the coupling along the free boundary of the dilatational and shear waves, the
generation of the von Schmidt wave at the boundary, plus the existence of a distinct boun­
dary wave, i.e. the familiar Rayleigh wave, are all described in the dynamic half-plane
problem.

The characteristics of wave propagation in a half-plane with a concentrated force
acting on the boundary and a half-space with a concentrated line load on the surface are
equivalent. Solutions for this problem are presented by Sherwood [2] and Fung [3] when the
time dependence of the load is a step function or a delta function. However, neither ofthese
functions represent loadings that can be imposed on the model in the laboratory. Further­
more, solutions obtained with the step or delta functions predict infinite Rayleigh stress
wave amplitudes along the free edge. In this study, a triangular pulse with finite rise and
decay times was selected as the loading function which represented a first approximation to
explosively induced loads applied in the associated experimental investigation.

Various aspects of the half-plane problem have been examined by employing dynamic
photoelasticity by Feder et al. [4] and Dally et al. [5]. Dynamic photoelasticity is particu­
larly suited for an experimental investigation ofthe half-plane since it yields full field results.
If the experimental model is sufficiently large and the loading time is sufficiently short,
the four stress waves (dilatational, shear, von Schmidt and Rayleigh) separate and their
individual characteristics can be examined.

The present investigation treats the half-plane with a boundary load using a combined
theoretical and experimental analysis. Experimental and theoretical results for the principal
stresses along the free edge of the half-plane are obtained and compared. Also, the decay
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rates of the maximum compressive and tensile stress amplitudes of the dilatational wave
are compared. These comparisons show many similarities between the theoretical and
experimental results; however, striking differences which exist in regard to the Rayleigh
wave amplitudes indicate that the experimental and theoretical models are not perfectly
matched. Photoelastic results for the Rayleigh wave are presented which indicate its
influence extends a distance below the boundary which is about 0·35 to 0·40 of its distance
from the load.

2. THEORETICAL DESCRIPTION OF WAVES IN A HALF-PLANE

2.1 Definition of problem

For a mathematical description of the dynamic field in the half-plane with boundary
loading which is observed by the photoelastic method, an isotropic, perfectly elastic, semi­
infinite plate with a concentrated normal load was considered. A Cartesian coordinate
system was chosen with the y-axis acting in the direction of loading and the x-y plane
coinciding with the median plane of the plate as shown in Fig. 1.

It was assumed further that the thickness dimension of the half-plane, measured along
the z direction, was smaller than the predominant wave lengths of the disturbance; i.e.
a two-dimensional, generalized plane stress analysis was employed where the elastodynamic
field quantities were averaged across the thickness of the plate. For example, the average
displacement in the x-direction, u(x, y, t), is given by

PbN6

u(x,y,t) = (2b)-t(b u(x,y,z,t)dz

Theorelical Model
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FIG. 1. Theoretical and experimental models.
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where 2b is the thickness of the plane and uis the actual three-dimensional x-component of
displacement. With similar equations for the average y displacement, v(x, y, t), and the
average stresses, 'tij(x, y, t), the boundary conditions along the surfaces ofthe plate (z = ±b)
were satisfied by setting 'txz , 't yz ' and 'tzz equal to zero.

Hooke's Law, relating the stresses and displacement gradients for the generalized plane
stress state becomes:

(2)

where Jl and v are the shear modulus and Poisson's ratio of the material, respectively. The
z-displacement is related to the average x and y displacement components by

w(x, y, z, t) = - vz(ou/ox +ov/oy)/(l- v).

Introducing the wave potentials [1], cp(x, y, t) and t/J(x, y, t), as

(3)

u = ocp/ox+ot/J/oy,

one may write the equations of motion as:

(dV2 -02/ot2)cp = 0,

v = ocp/oy-ot/J/ox (4)

(5)

where V2 is the two-dimensional Laplacian operator and the wave velocities, C 1 and C2'

defined by

/(2 = 2/(I-v) (6)

characterize the dilatational or P waves (cp(x, y, t» and the shear or S waves (t/J(x, y, t»,
respectively. Since K > 1, the P wave travels with the greater velocity. Note from (2), (4), (5),
and (6) that

(7)

In the problem at hand for the semi-infinite plate occupying the region, - 00 < x < 00,°~ y < 00, Izi ~ b, the boundary conditions along y = °become

'tXY(x, 0, t) = 0, 'tYix, 0, t) = - p(t) 8(x) (8)

where 8(x) is the Dirac delta function representing the concentrated vertical line load at
x = y = °which extends across the thickness from z = - b to z = b. The magnitude of the
load, p(t), will be chosen later to approximate the lead azide explosion in the experiment.

2.2 Solution of problem

Equations (2) through (8) along with the condition of outgoing radiation at infinity
completely define the problem. The exact solution for certain basic loading functions, p(t),
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is known from l2J and 13Jand thus, by the principle of superposition, solutions for arbitrary
loading can be obtained.

The method for solving the problem which was followed is described in detail in Fung's
text 13]. It involves transform techniques and contour integration. Since the main interest
however, is in evaluating the non-zero principal stress component Txx along the free edge of
the plane (y = 0), only this result is given here. From equations (7) and (8) we have.

(9)

The first term on the right side of (9) is infinite at x = 0, but vanishes for all x #- O. This
infinite stress value at x = 0 occurs because the concentrated force acts there. However.
along the free edge away from the load, the stress depends on the second term in (9) alone.
The final result is presented below with Poisson's ratio taken as v = 1/3 which is close to the
value obtained experimentally for the CR-39 plate.

Txx(X, 0, t) = -3
2

[_ [1 f(IJ)P(t- IJX )d lJ
rrc 2 )3- 111 C2

(10)

+rrc 2p(t-~)J; (x > 0)
2CR CR

where

(II)

and the Rayleigh wave velocity, CR , is given by

CR = 2c2/(3 +3±rt ~ 0·92 C 2

and Pindicates dp/dt. The results for x < 0 can be obtained from (10) by symmetry.
To interpret the solution, note first that in an actual situation the loading begins at

t = 0, i.e.

p(t) = p(t) = 0 for t.-s;; O.

Hence, if the value of observation time is fixed at t = t, say, (t > 0), we obtain from (10),

(l2a)

(12b)

(l2c)

Thus, it can be seen that before the P wave arrives, equation (12a), there is no response.
From the leading front of the S wave to the leading front of the P wave the stress is expressed
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(13)

by (12b). The stress associated with the S wave from the leading front of the Rayleigh wave
to the leading front of the S wave is in (12c) while the arrival of the Rayleigh wave and the
stress distribution from the loading point up to the Rayleigh wave is denoted by (l2d). The
solution then indicates the effects of three distinct waves*, P, S, and Rayleigh, traveling
along the surface. The P wave velocity for v = -t is, C 1 ~ 1·73 c2 ' and, as given above, the
Rayleigh wave moves with the smallest velocity, CR ~ 0·92 c2 .

Of interest is the fact that the Rayleigh wave amplitude is directly proportional to the
rate ofloading. The P and S waves, however, are less sensitive to the loading rate since they
are associated with the integrals in equations (12) which "smooth out" the loading function.

2.3 Properties of the Rayleigh wave for pulse loading

Further details of the stress response along the free edge of the half-plane (equations 12)
can be observed after the time dependence of the load, p(t) is specified. Although the exact
form for this function in the experiment cannot be determined, a reasonable approximation
for it is the triangular pulse shown in Fig. 2. Mathematically, this is expressed by

p(t) = Pot/to; 0 < t < to

p(t) = PO{tl -t)/(t 1 -to); to < t < t 1

p(t) = 0; t 1 < t.

a.
"0
o
o
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t,

Time t

FIG. 2. Loading function.

In (13), Po is the peak value of the load, to is the rise time, and t 1 is the total pulse duration
time. Thus, t 1 - to is the decay time of the load.

By differentiating the above relations we obtain

P(t) = Po/to; 0 < t < to

P(t) = - Po/to[to/{t 1 - to)]; to < t < t 1

p(t) = 0; t 1 < t

(14)

which indicate constant rates of loading and unloading. The ratio of the rate of unloading
to the rate ofloading is to/{t 1 - to) = rise time/decay time.

Values of to and t 1 for numerical calculation are chosen from certain characteristics of
the experimental results which will be discussed below. For the following analysis, it is

* On the boundary the P wave and von Schmidt wave are superimposed and their individual features cannot
be distinguished (see Fig. 6). Their combined effect is treated here as a P wave.
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pointed out that (t 1 - to) > to and the time is taken as t = t > t l' i.e. the response at fixed
times after the load has been completely removed is discussed.

Because of its simple form, the Rayleigh wave, which arrives at the position, x = CRt,
can be analyzed in some detail. From (12d) and (14) one obtains:

(15)
!xx]R = -(Po/3cRtO)[to/(t1 -to)]; cR(t-td < x < cR(t-tO)

and for x < CR(l-t l ) the Rayleigh wave disturbance vanishes. Therefore, the Rayleigh
wave propagates along the boundary in the form of two rectangular pulses. The leading
pulse produces a tensile stress of magnitude, Po/3cRtO' and extends a distance cRtO' The
second pulse is compressive, with a magnitude Po/3cR(t l -tO) and width CR(t1 -to). It is
noted that the areas of the two pulses are equal which yields the following relation

magnitude of tensile pulse
magnitude of compressive pulse

width of compressive pulse
width of tensile pulse

(16)

Furthermore, since the ratio of the width of the tensile pulse to that of the compressive
pulse is equal to (rise time)/(decay time) one obtains

magnitude of tensile pulse
magnitude of compressive pulse

rise time of load

fall time of load
(17)

This relation was used to calculate the ratio of rise time to fall time from the experimentally
determined ratio of the magnitude of the Rayleigh tensile peak to the compressive peak.

The theoretical prediction that the Rayleigh wave suddenly rises, reverses its magnitude,
and then decays, occurs from the choice of the loading function. For any loading, however,
the Rayleigh wave at the free boundary exhibits stresses given by:

(18)

A description of the P and S wave contributions to the stress along the edge is more
complicated, and is easier to discuss from the numerical results. This is done in a subsequent
section. However, some features associated with the P wave arrival, which may be discerned
directly from the analytical solution, are that the stress is initially compressive, reaching its
peak compressive value at x = C1(t- to) for (l > td; and that the stress then changes sign
and reaches a tensile peak at about x = C1(t- t d. The point at which the initial compressive
pulse ends depends on the relative values of to and t I'

By obtaining experimentally the distance from the leading front of the P wave to the
point where the compressive peak occurs (equal to c1tO)' the numerical value of to was
approximated. The value of t t was then established from equation (17) as indicated above.

3, DYNAMIC PHOTOELASTIC EXPERIMENT

3.1 Description of experiment

The experimental model of the half-plane was fabricated from a large sheet of columbia
resin CR-39 to dimensions shown in Fig. 1. The sheet was sufficiently large to eliminate the
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possibility of reflections from the boundaries during the time interval to separate the various
stress waves.

Dynamic loading of the model was accomplished with a 250 mg charge of lead azide
(PbN6 ) packed into a semi-circular cavity at the top edge of the plate as illustrated in
Fig. 1. The charge of lead azide was ignited at time t = 0 with a bridge wire detonator.
The load intensity was sufficient to fracture the model in the local neighborhood about the
cavity.

Dynamic isochromatic fringe patterns (light field) were recorded by employing a
multiple spark Cranz-Schardin camera [6,7] operating at an average framing rate of
65,000 fps. A total of 16 fringe patterns showing the photoelastic representation of the
stress wave propagation over the time range from 60 to 290 flsec are presented in Fig. 3.

3.2 Description offringe patterns

The formation ofthe fringe pattern changes markedly as the four stress waves propagate
outward from the explosive source. An enlargement of frame 2 taken at t = 66 flsec,
presented in Fig. 4, shows the P wave followed closely by the S wave. The von Schmidt
(PS) wave is in its very early stage of development. The Rayleigh wave and the S wave are
still superimposed at the boundary and their individual features cannot be distinguished.

An enlargement offrame 5 (t = 107 flsec) presented in Fig. 5 shows the four stress waves
at various stages in their separation process. The P and S waves have completely separated
and are quite distinct. The PS wave starting at the P front on the boundary and connecting
to a tangent point on the S wave is becoming more evident. Near the boundary, the Rand
S waves are beginning to separate and the characteristic fringe pattern representing the
R wave is observed.

The characteristics of the four stress waves are most clearly presented in Fig. 6 (enlarge­
ment offrame 10 at t = 190 flsec), when the separation ofthe waves is essentially complete.
The leading P wave is shown by fringes which are nearly circular arcs with origins at the
explosive source. The PS wave is represented by nearly plane fringes which make an angle
of 35° with the boundary. The intersection of the PS wave with the shear wave yields a
very complex fringe pattern in the region where the waves overlap. Two fringe peaks
(N about 2'5) are separated by a narrow valley where the fringe order N is about zero.
The fringes associated with the S wave follow the circular advancing front; however, due
to the changing shear stress magnitude with angular position, the fringes are not circular
arcs. The maximum shear stress occurs along a line making a 35° angle and decreases to
relatively low values near the boundary and the vertical axis. The Rayleigh wave which
closely follows the S front is a plane wave. On the boundary it exhibits a tensile peak followed
by a compressive peak. Just below the boundary two isotropic points occur about in line
with the boundary peaks. Between these isotropic points lies a fringe peak (N = 3). The
fringe pattern associated with the Rayleigh wave indicates its plane front has traveled 7 in.
and extends to a depth of about 2·5 in.

To further examine the depth of the Rayleigh wave disturbance reference is made to
Fig. 7 where the fringe pattern corresponding to t = 290fl is shown. At this time, the plane
front of the Rayleigh wave at a distance x = 11 in. is quite evident to a depth in the model
of about 4 in. Thus, it appears that the Rayleigh wave cannot be considered as a localized
boundary disturbance. While the boundary stresses are the most significant, the stresses at
appreciable depths are by no means negligible.
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4. THEORETICAL AND EXPERIMENTAL RESULTS

4.1 Numerical data

Measurements of the position of the P and R wave fronts and their corresponding
times of arrival were made. Average velocities were then computed for c1 and CR as 72,000
and 38,200 in/sec respectively. The angle of the PS wave front with the edge of the model, e,
was established at 35° (see Fig. 6). The S wave velocity, C2 was computed using this angle and
the relation r1] :

(2 = C 1 sin e (19)

to give C2 = 41,300 in/sec.
The dynamic value of Poisson's ratio and the modulus of elasticity were computed

from equation (6) using the previously established values of (1 and C2 . Values of v = 0·34
and E = 559,000 psi were obtained for the dynamic elastic constants (rate averaged)
ofCR-39.

Fringe order was established as a function of position along the boundary. The fringe
orders were converted to principal stress by using the stress optic law:

(20)

On the free boundary, equation (20) reduces to

(21)

where N is the fringe order
h is the model thickness (0'262 in.)
(f,,)d is the material fringe yalue 109 psi-in.

The material fringe value which was established by a static calibration was then cor­
rected to a dynamic value of 109 psi-in following Clark's [8] calibr;ltion method.

Numerical results based on equations (12) and (14) for the principal stress, 'xx' along
the boundary were evaluated at observation times of 60, 92, 139 and 208 J.lsec which
correspond to the photoelastic observations in frames 1,4, 7 and 11. The integrations indi­
cated in equation (12) were performed on the computer by a standard numerical procedure.

Rise and fall times for the ideal triangular pulse loading function (Fig. 2) were computed
from the experimental data following the procedures previously discussed. However, a
certain amount of spreading of the experimentally observed P wave compressive pulse
occurs due to dispersion and dissipation. Hence, better agreement was obtained by choosing
a value of rise time, to, less than that predicted by the measurement of the distance between
the P wave front and the P wave compressive peak. The values selected were to = 9 J.lsec,
and, based on equation (17), t 1 - to = II J.lsec.

The stresses given by equation (12) were normalized by the constant to = 2Po/3nc2 tO'

Then the theoretical results so obtained were scaled by a factor of 24 which produced
good agreement with the experimental results for the P wave tensile and compressive
peaks at the intermediate observation time, t = 92 J.lsec.
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FIG. 3. Dynamic fringe patterns for a half-plane model with an explosive load supplied at the free
surface (t in !-'sec and Cartesian grid on I-in. centers).



FIG. 4. Photoelastic representation of the four stress waves early in the dynamic event.



FIG. 5. Photoelastic representation of the stress waves at various stages of separation.
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4.2 Comparison of theoretical and experimental results

The results obtained for the boundary stress 'xx as a function of position are shown in
Figs. 8-11. These results for the boundary stresses are shown for four selected times during
the dynamic event which include t equal to 60, 92, 139, and 208 Jisec.
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FIG. 8. Theoretical and experimental results for stress Txx at t = 60 Jlsec.

Superimposed theoretical and experimental results obtained at t = 60 Jisec are shown
in Fig. 8. The comparison shows that the arrival of the P wave front and the compressive
P wave peak agree well. The decay of the compressive P stress and the subsequent build
up of the tensile tail are also in close agreement although the experimental values of arrival
times lag the theoretical values. The sharp increase in stress at the arrival of the Rayleigh
front is also noted in both cases. Differences occur regarding predicted and measured
amplitudes. The experimental values of the peaks of the P wave stresses are higher than the
theoretical values. The sharp reduction in stress at the arrival of the S wave which is
theoretically predicted is not totally obtained experimentally.

The theoretical and experimental results obtained at t = 92 Jisec shown in Fig. 9 also
indicate relatively good agreement. The experimental arrival times of the compressive
and tensile peaks lag behind the theoretical predictions. The magnitudes of these peak
values of the P wave agree very well since the theoretical and experimental results were
scaled to match at this time. Again, the theoretically predicted compressive peak associated
with the S wave was not experimentally observed. The arrival of the Rayleigh wave peaks
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FIG. 9. Theoretical and experimental results for stress 'xx at I 92 Jlsec.

compares well; however, the difference in amplitudes is very large with the experimental
values smaller than the theoretical values by nearly an order of magnitude.

The theoretical and experimental results obtained at t = 139 /1sec shown in Fig. 10
are comparable with the previously described comparison. The experimental maximums
for the P and R waves lag behind the theoretical predictions. The compressive pulse due
to the S wave is not observed in the experiment, and an order of magnitude difference
exists in the amplitude of the Rayleigh wave with the experimental results being the lower
of the two reported values.

The final comparison presented in Fig. 11 for t = 208/1sec shows an appreciable lag
in the arrival times of the experimental peak values of the stresses. Also, the magnitudes
of the experimental values of the maximum stresses have dropped below the theoretically
predicted values. These results indicate a more rapid attenuation and spreading of the
experimentally determined stresses in comparison with the theoretical predictions.

To further show the attenuation characteristics, the maximum values ofthe compressive
and tensile stresses associated with the P wave are plotted in Fig. 12 at each position along
the boundary. It is observed that the experimental magnitudes are greater close to the
point ofloading and that they decay more rapidly than predicted by theory. The theoretical
values are larger for the compressive peak after it has traveled about 7 in., while for the
tensile peak, the theoretical values become greater beyond 3·5 in. from the load.
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Strikingly different behavior of the theoretical values of the peak compressive stress
is found near the load. The theoretical two-dimensional solution predicts zero compressive
stress parallel to the boundary directly under the load. Away from the load, a constant
maximum value of compressive stress is maintained for a distance where effects generated
only during the loading period have arrived. The constant loading rate is just enough to
counteract the geometric attenuation of the outgoing P wave. After combined effects of the
total loading pulse occur, the P wave compressive amplitude, decays as expected.

The attenuation of the Rayleigh wave stresses is presented in Fig. 13. The theoretical
solution does not predict attenuation of the stresses associated with the Rayleigh wave;
the experimental results clearly indicate a decay in amplitude with distance of propagation.
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FIG. 13. Attenuation of maximum compressive and tensile stresses associated with the R wave.

5. DISCUSSION AND CONCLUSIONS

The propagation of stress waves in a thin semi-infinite plate with an explosive load
acting on the boundary has been studied by the photoelastic method. Special attention
is directed to observations of the wave pattern near the boundary; and numerical values
of the non-zero principal stress along the boundary are calculated and compared to those
obtained from an elastodynamic generalized plane stress solution.

Theoretical calculations of the principal stress along the free edge of the half-plate are
based on the idealized two-dimensional model of a semi-infinite plane with a concentrated
normal load whose magnitude varies with time in the form of a triangular pulse. For the
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purpose of comparing the two results, the theoretical stress values associated with the lead­
ing P waves are adjusted to match approximately the corresponding photoelastic ones at a
particular observation time. The agreement, then, ofthe two sets ofresults for all waves at the
other observation times is considered good in that the overall features of the boundary stress
variation are duplicated; and further, since discrepancies in the results can be attributed
to differences in the experimental and theoretical models.

Effects of internal dissipation plus effects caused by the actual three-dimensional
geometry, which introduces the phenomenon ofdispersion are both neglected in the genera­
lized plane stress analysis, and are believed to explain some of the discrepancies in the
results. Both dissipation and dispersion cause the actual stress magnitudes to decay more
rapidly while dispersion also causes the width of a pulse to increase as it propagates.
Briefly, dispersion means that the velocity of a wave depends on the frequency components
of the wave and it occurs in a plate from the interaction of the waves with the front and
back surfaces of the plate. Dispersive effects become negligible as the characteristic wave
lengths become large in comparison with the plate thickness. According to the theory of
elastic wave propagation in plates [9], the generalized plane stress approximation is
accurate if

wave length ~ n x plate thickness.

A calculation of the predominant wave lengths in the frequency spectrum of the experi­
mentally measured response of the P and R waves indicated the P wave length to be about
equal to n x plate thickness, while the Rayleigh wave length is about! that of the P wave.
Thus, the effects of internal friction and dispersion appear to account for the greater rate
of attenuation and spreading observed experimentally in propagation of P and R waves.

Another difference between the experimental and mathematical models, which is
thought to explain the discrepancies in the P wave stress values close to the point ofloading,
is in the description of the loading. In the experiment, the explosive charge not only creates
a net normal force, but also it produces components offorce acting parallel to the boundary
of the half-plane. The dynamic field due to this double tangential loading will decrease
with distance more rapidly than the field caused by the normal force since, by symmetry,
the net tangential force is zero. Thus, it is neglected in the theoretical analysis. (For example,
in two-dimensional plane static problems, stresses decay with distance from a point force
as l/r. but decay as l/r2 from two equal but oppositely directed forces located close together.)
It is found, however, that the experimentally obtained values of stress associated with the
leading P waves become greater than the theoretical values as the observation station is
taken closer to the point of loading. In fact, the theoretical peak compressive P wave stress
along the boundary due to the normal force alone propagates with a nearly constant value
during the period of loading and does not begin to decrease until the unloading cycle
occurs. This is not found from the experimental data, but instead both the compressive
and tensile peaks continually increase with decreasing distance from the boundary load.
It is believed that these differences can be corrected by including in the theory the action
of two equal and opposite tangential forces acting very close together, for they will produce
initially large compressive stresses and will also increase the tensile stress pulse which
follows.

It is believed that the striking differences in the experimentally and theoretically
predicted Sand R wave amplitudes can be attributed to the fracturing of the model in the
neighborhood of the explosive charge. Large values of the compressive stress associated
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with the P wave can be supported by the CR-39 and hence are propagated into the model.
However, the tensile stresses in the tail of the P wave are large enough to produce localized
fracturing. This fracturing relieves the load to a significant extent as much of the energy
associated with the explosive charge is utilized in forming multiple fracture surfaces and in
accelerating the debris particles. Thus, the magnitude of the subsequently formed Sand R
waves are also significantly decreased as experimentally observed. It appears that a more
inclusive mathematical model is necessary to describe the observed results. This model
should at the very least incorporate a bi-Ievel forcing function.

It appears that the excellent agreement of static two-dimensional photoelastic results
with the corresponding values obtained from a plane stress elastostatic analysis is very
difficult to achieve for dynamic problems. There are several factors occuring in dynamic
problems which are less pronounced or non-existent in static situations. Furthermore,
these additional features are difficult to eliminate or control in an experiment and may add
so much complexity to mathematical analysis as to make it impossible. Effects of dissipa­
tion, dispersion, and fracture as well as modeling the experimental loading function
encountered in this problem should be considered typical. Nevertheless, a great deal of
insight regarding the physical nature of complex dynamic problems can be gained by a
combined theoretical and experimental approach.
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Resume-Cette investigation traite d'un demi-plan avec une charge de limite employant une analyse combinee
theorique et experimentale. L'approche theorique considere une plaque semi-infinie isotrope, parfaitement
elastique avec une charge normale concentree II la limite. Le modele experimental consiste en une grande feuille
de resine de colombie CR-39 chargee d'un chargement d'azide de plomb dans une fosse semi-cylindrique sur Ie
bord de la plaque. Les resultats de la tension de limite des analyses photoelastiques theoriques et dynamiques
etaient compares. La comparison a montre un accord pour les effets dus II I'onde Pet des differences marquees
mais explicables dans les resultats theoriques et experimentaux associes aux ondes S et R. II semble qu'une meilleure
correlation entre les fonctions de chargement el les modeles experimentaux et mathematiques est necessaire
afin d'ameliorer I'accord.
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Zusammenfassung-DieseArbeit untersucht die Halbebene mit Grenzbelastung mittels kombinierter theoretischer
und experimenteller Analyse. Die Theorie behandelt eine isotrope, vollkommen elastische Platte, die semi­
unendlich ist, und eine konzentrierte Grenzlast hat. Das Experimentalmodell bestand aus einer Kolumbiaharz­
platte CR-39 die mit Bleiazid in einer halbylindrischen Vertiefung am Plattenrand belastet wurde. Die Resultate
der Grenzspannungen aus theoretischen und Versuchsanalysen wurden verglichen. Diese Vergleiche zeigten
Obereinstimmung fiir die Resultate der P Welle und nennenswerte aber unerkllirte Unterschiede zwischen
theoretischen und experimentellen Resultaten die mit den Sand R Wellen zusammenhlingen. Es scheint, dass eine
bessere Beziehung der Belastungsfunktionen gefunden werden muss urn die Obereinstimmung zu verbessern.

AOCTpaKT-3TO HCCne,l\OBaHHe paCCMaTpHBaeT nonynnocKoCTb C rpaHH'iHoil. HarpY3Koll., npHMeHlIlI
KOM6HHHpoBaHHbIll. TeOpeTH'ieCKHil. H 3KcncpHMcHTanbHblH aHanH3. TCOpeTH'iCCKHil. no,l\XO,l\ KacaeTClI
H30TponH'ieCKoll., H,l\CanbHO-3naCTH'iHoil. nony6ccKOHC'iHoil. nnaCTHHbI CKOHI.\CHTPHPOBaHHOil. HOpMaJlbHOil.
HarpY3Koll. Ha rpaHHI.\c. 3KcncpHMcHTanbHali MO,l\Cnb COCTOHT H3 60nbUloro nHCTa KonyM6Hll.cKoH (HHO­
6HcBOll.) CMonbI CR-39, 3arpY)KeHHOrO 3apll,l\Koil. OKHCH CBHHI.\a (a30TOBO,l\OPO,l\Hoil. conH CBHHI.\a) B
nonYI.\HnHH,l\pH'IcCKoll. Bna,l\HHC Ha KpaIO nnaCTHHbI. CpaBHHBanHcb pe3ynbTaTbI rpaHH'iHOrO Hanpll)KCHHlI
TCOpCTH'iCCKHX H ,l\HHaMH'IeCKHX !jJoToynpyrHx aHanH30B. CpaBHcHHc nOKa3bIBaeT -cornaCOBaHHOCTb
3!jJ!jJCKTOB, o6ycnoBneHHYIO P BonHoil. H OTMC'iCHHylO, HO 06bllCHHMYIO pa3HHI.\y B TeOpCTH'iCCKHX H
3KcncpHMCHTaJIbHbIX pC3yJIBTaTaX, CB1I3aHHblX CS H R BonHaMH. 113 3Toro lIBCTBYCT, 'iTO, 'iTo6bI yJIy'iUlHTb
COrJIaCOBaHHOCTb ,l\JIli 3KcncpHMeHTaJlbHbIX H MaTCMaTH'iCCKHX MO,l\eJIcll., Tpc6YCTClI JIy'iUlCC COOTHOUlCHHC
Me)K,l\y !jJYHKI.\HlIMH 3arpY)KCHHlI.


